2,501 research outputs found

    Proteolysis in the Escherichia coli heat shock response: a player at many levels

    Get PDF
    Proteolysis is a fundamental process used by all forms of life to maintain homeostasis, as well as to remodel the proteome following environmental changes. Here, we explore recent advances in understanding the role of proteolysis during the heat shock response of Escherichia coli. Proteolysis both regulates and contributes directly to and the heat shock response at multiple different levels, from adjusting the levels of the master heat shock response regulator (σ[superscript 32]), to eliminating damaged cellular proteins, to altering the activity of chaperones that refold heat-denatured proteins. Recent results illustrate the complexity of the heat shock response and the pervasive role that proteolysis plays in both the cellular response to heat shock and the subsequent limiting of the response, as cells return to a more ‘normal’ physiological state

    Enzymatic Cellulose Hydrolysis: Enzyme Reusability and Visualization of beta-Glucosidase Immobilized in Calcium Alginate

    Get PDF
    The high cellulase enzyme dosages required for hydrolysis of cellulose is a major cost challenge in lignocellulosic ethanol production. One method to decrease the enzyme dosage and increase biocatalytic productivity is to re-use beta-glucosidase (BG) via immobilization. In the present research, glutaraldehyde cross-linked BG was entrapped in calcium alginate gel particles. More than 60% of the enzyme activity could be recovered under optimized conditions, and glutaraldehyde cross-linking decreased leakage of BG from the calcium alginate particles. The immobilized BG aggregates were visualized by confocal laser scanning microscopy (CLSM). The CLSM images, which we believe are the first to be published, corroborate that more BG aggregates were entrapped in the matrix when the enzymes were cross-linked by glutaraldehyde as opposed to when they are not cross-linked. The particles with the immobilized BG were recycled for cellulase catalyzed hydrolysis of Avicel. No significant loss in BG activity was observed for up to 20 rounds of reaction recycle steps of the BG particles of 48 h each, verifying a significant stabilization of the BG by immobilization. Similar high glucose yields were obtained by one round of enzymatic hydrolysis of hydrothermally pretreated barley straw during a 72 h reaction with immobilized BG and free BG

    Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw

    Get PDF
    BACKGROUND: The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic glucose and xylose yields from mildly pretreated wheat straw in multivariate experimental designs of acid and alkaline pretreatments. RESULTS: The pretreatment pH was the most significant factor affecting both the enzymatic glucose and xylose yields after mild thermal pretreatments at maximum 140°C for 10 min. The maximal enzymatic glucose and xylose yields from the solid, pretreated wheat straw fraction were obtained after pretreatments at the most extreme pH values (pH 1 or pH 13) at the maximum pretreatment temperature of 140°C. Surface response models revealed significantly correlating interactions of the pretreatment pH and temperature on the enzymatic liberation of both glucose and xylose from pretreated, solid wheat straw. The influence of temperature was most pronounced with the acidic pretreatments, but the highest enzymatic monosaccharide yields were obtained after alkaline pretreatments. Alkaline pretreatments also solubilized most of the lignin. CONCLUSIONS: Pretreatment pH exerted significant effects and factor interactions on the enzymatic glucose and xylose releases. Quite extreme pH values were necessary with mild thermal pretreatment strategies (T ≤ 140°C, time ≤ 10 min). Alkaline pretreatments generally induced higher enzymatic glucose and xylose release and did so at lower pretreatment temperatures than required with acidic pretreatments

    Cathode Assessment for Maximizing Current Generation in Microbial Fuel Cells Utilizing Bioethanol Effluent as Substrate

    Get PDF
    Implementation of microbial fuel cells (MFCs) for electricity production requires effective current generation from waste products via robust cathode reduction. Three cathode types using dissolved oxygen cathodes (DOCs), ferricyanide cathodes (FeCs) and air cathodes (AiCs) were therefore assessed using bioethanol effluent, containing 20.5 g/L xylose, 1.8 g/L arabinose and 2.5 g/L propionic acid. In each set-up the anode and cathode had an electrode surface area of 88 cm2, which was used for calculation of the current density. Electricity generation was evaluated by quantifying current responses to substrate loading rates and external resistance. At the lowest external resistance of 27 Ω and highest substrate loading rate of 2 g chemical oxygen demand (COD) per L·day, FeC-MFC generated highest average current density (1630 mA/m2) followed by AiC-MFC (802 mA/m2) and DOC-MFC (184 mA/m2). Electrochemical impedance spectroscopy (EIS) was used to determine the impedance of the cathodes. It was thereby confirmed that the FeC-MFC produced the highest current density with the lowest internal resistance for the cathode. However, in a setup using bioethanol effluent, the AiC-MFC was concluded to be the most sustainable option since it does not require ferricyanide. The data offer a new add-on option to the straw biorefinery by using bioethanol effluent for microbial electricity production

    Enzyme discovery for tuber processing pulps

    Get PDF

    Seaweed Hydrocolloid Production: An Update on Enzyme Assisted Extraction and Modification Technologies

    Get PDF
    Agar, alginate, and carrageenans are high-value seaweed hydrocolloids, which are used as gelation and thickening agents in different food, pharmaceutical, and biotechnological applications. The annual global production of these hydrocolloids has recently reached 100,000 tons with a gross market value just above US$ 1.1 billion. The techno-functional properties of the seaweed polysaccharides depend strictly on their unique structural make-up, notably degree and position of sulfation and presence of anhydro-bridges. Classical extraction techniques include hot alkali treatments, but recent research has shown promising results with enzymes. Current methods mainly involve use of commercially available enzyme mixtures developed for terrestrial plant material processing. Application of seaweed polysaccharide targeted enzymes allows for selective extraction at mild conditions as well as tailor-made modifications of the hydrocolloids to obtain specific functionalities. This review provides an update of the detailed structural features of κ-, Κ-, Ν-carrageenans, agars, and alginate, and a thorough discussion of enzyme assisted extraction and processing techniques for these hydrocolloids
    • …
    corecore